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The paper contains an investigation of conditions under which R simultaneous equations of
additive type in NV unknowns have a solution in integers, not all 0. If the degree £ of the equations
is odd, it suffices if NV is greater than an explicit function of R and £. If £ is even, two further condi-
tions are imposed, and neither can be entirely avoided. It is also proved that the equations have
a solution in p-adic integers, not all 0, if N is greater than an explicit function of R and &.

1. INTRODUGTION
In this paper we investigate the solubility of a system of R simultaneous equations of the type
ap X+ tapyxk =0,
(1)
Ap X5+ ...t agyxt =0,
in integers xy, ..., 4y, not all 0. The coefficients a;; are arbitrary integers. For brevity we

describe equations of this type as additive. We denote the forms on the left of (1) by fi, ..., fx.
When £ is odd we shall establish the following result.

THEOREM 1. Let k be an odd positive integer. The equations (1) have a solution in integers x,, ..., xy,
not all 0, if N = [9R%log 3RK]. 2)

When £ is even we need to impose further conditions. We exclude the case £ = 2, partly
to avoid some minor complications and partly because there may well be more effective
methods for this case. We prove:

* This paper was written with the assistance of a research contract from the National Science Foundation
of the U.S.A.
1 Professor Davenport died on 9 June 1969.
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558 H. DAVENPORT AND D. J. LEWIS

THEOREM 2. Let k be an even positive integer greater than 2. Suppose that
(1) the equations (1) have a real non-singular solution;
(ii) every set of S independent linear combinations of fi, ..., fr, with integral multipliers not all 0,

contains explicitly at least [48RSk?log 3Rk?]

variables, and this holds for S$ = 1,2, ..., R.

Then the equations (1) have a solution in integers x,, ..., Xy, not all 0.

By a non-singular solution we mean one such that the matrix (df;/dx;), evaluated at the
solution, has rank R.

The condition (ii) implies in particular, on taking § = R, that

N > [48R?3log 3RK?].

There are good reasons for both the additional hypotheses in theorem 2, though it may
be that they can be somewhat relaxed. Certainly the existence of a real solution, with
Xy, ..., xynot all 0, must be postulated when £ is even. But even then, neither of the conditions
(i) and (ii) is by itself sufficient, as is shown by the following examples with R = 2.

Consider two additive equations of the form

k k K E

G XT+ @ Xyt Xt ay Xy = 0,
k ko

by X1+ +byay =0,

where b,,,,,...,by are all positive and a,, ..., q,, are not all of the same sign. These two
equations have a real solution with not all of x,, ..., xy zero (though with x,,,,, ..., xy zero).
If m is small in relation to % they may have no non-trivial integral solution. The equations
may be chosen so as to satisfy (ii), but do not satisfy (i).

Or again, consider the same two equations but suppose now that a,, ..., a,, are all positive
and b,,,,, ..., by are not all of the same sign. If N—m is small in relation to % the equations
may have no non-trivial integral solution. The coeflicients may be chosen so that (i) is
satisfied, but (ii) will not be satisfied because of the smallness of N —m

In principle the proof of theorems 1 and 2 follows the lines of the Hardy-Littlewood
method for Waring’s problem, as improved by Vinogradov. An essential preliminary is the
determination of conditions which will ensure the solubility of the equations (1) in every
p-adic field. This forms the subject-matter of §§ 2 to 4, and results in the following conclusion.

THEOREM 3. The equations (1) have a solution in p-adic integers x,, ..., xy, not all 0, for every
prime p, tf . { [9R%log 3R] for k odd, ”
[48R%31og 3RK?]  for k even. )

‘For the proof of theorems 1 and 2 we need not merely a p-adic solution but a non-singular
p-adic solution. This cannot be ensured by any condition of the above kind, asserting only
that N is greater than some function of R and £. On this question we prove theorem 4in § 5;
this incorporates conditions of a similar general nature to (ii) in theorem 2 above. As regards
the application of this in the proof of theorem 1, we show in § 13, by induction on R, that the
condition can be deemed to be satisfied. As regards the applicationin the proof oftheorem 2,
the condition is covered by (ii) in the hypothesis of that theorem.
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SIMULTANEOUS EQUATIONS OF ADDITIVE TYPE 559

We have not exercised great cconomy in the analytical work of §§ 6 to 12, since the final
answer is dominated by that in theorem 3 for the p-adic problem. Morc precise results in the
sp%c6i)al casc when R = 2 and k£ = 3 werc obtained in an carlier paper (Davenport & Lewis
1966).

The principal results hitherto known that are relcvant to our problem are those of Birch
(1957) and Birch (1962). Both these papers are of much wider scope, in that they apply to
homogeneous forms in gencral (not necessarily additive). The result of Birch (1957) relates
to forms of odd degree, and implies our theorem 1, but with an unspecified function of R and
k on the right of (2). The paper of 1962 (which does not restrict £ to be odd) postulates the
existence of a non-singular p-adic solution for every p, and of course the cxistence of a real
non-singular solution if £ is even, and contains also a condition which involves the dimension
of the singular locus of the algebraic sct (in complex space) defined by (1). The latter condi-
tion, in the case of additive cquations, has some affinity with condition (ii) in theorem 2.

2. THE SOLUBILITY OF CONGRUENCES
In this section we prove various results concerning the solubility of R simultaneous
congruences in n unknowns of the type
ay, X5+ ... +a;,xk =0 (modp?),
(4)
apxf+...+ag,xk =0 (modp?).

Here the a.. arc any intcgers (or residue classes to the modulus p?), and y is any positive
ij Yy g 14 yPp
integer, though some of the results relate only to the case y = 1. It will be convenient, in the
present scction only, to restrict the words solution and solubility to refer to solutions with at

least one x; not divisible by p.
We should emphasize that the results of this section are by no means cxhaustive; they
have been selected to cover our requircments, as will become apparent in the next section.

LemMa 1 (Chevalley). Let y = 1. The congruences (4) are soluble if
n > Rk. (5)

Proof. See Chevalley (1935). (The result holds more generally for any R homogencous
congruences modulo p of degree £.)

LEMMA 2. Let k be odd. The congruences (4) are soluble with each x; = 0 or 1 or —1 ¢f

21 > prR, (6)

Proof. We use a straightforward extension of an argument of Chowla & Shimura (1963).

Define the linear forms L, ..., Lyiny,,...,y, by
Li(yy, - 5¥n) = anth + .o+ 05,4,

Giving each y; the values 0 and 1, we obtain 2" sets of values for L, ..., L,. The number of
distinct possibilitics for Ly, ..., L, to the modulus p7 is p7%. The hypothesis (6) implics that
the same sct of values (mod p?) must arise from two different sets of vy, ..., y,, say ¥, ..., ¥,
and g, o TR Ly~ s gi—y) = 0 (mod 7).

71-2
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560 H. DAVENPORT AND D. J. LEWIS

The numbers y;—yj are all 0 or 1 or —1, and not all 0. They satisfy

4

(Yi—97)* = y5—9j-
Hence they provide a solution of (4), in the sense defined earlier.

LeMMA 3. Let y = 1 and let n = 3R. Suppose that the number of columns of the matrix (a;;) in any
set of columns of rank S (mod p) does not exceed 38 —2, for S = 1,2, ..., R—1. Then the congruences

(4) with y = 1 have a solution if » > (3RK)S. (7)

Proof. We recall first that the values assumed by x* modulo p as x varies are the same as the
values assumed by x%, where § = (k,p—1). Hence we may replace £ by d in (4).

We may suppose that for every j there is some 7 for which a;; == 0 (mod p). For in the con-
trary case the congruences have an obvious solution with one #; equal to 1 and the rest 0.

We follow a classical line of argument which expresses the number of solutions in terms
of exponential sums. Let 4" denote the number of solutions of the congruences (4), with
y = 1, including the trivial solution in which all x; are 0. We wish to prove that 4" > 1.
We have N=p TS S @y,

Uty oy U F1, e %

where all the variables run over complete sets of residues (mod p), and e, (m) = e*im/?, and
®,, ..., D, denote the forms on the left of (4), with § in place of k. We isolate the term p"~ % on
the right coming from u;, = ... = u, = 0. In the other terms we note that

U O+ Fupg®p = Ajxf+ .+ A xd,

where AN =Nj(uyy ey uy) =

L=

8
<
£
—~
<~

l
vi—'

S
~

Hence N —prE =k 3 T(A)... T(A,), (8)

where the prime denotes that not all «; are 0, and where

T(A) = Se)(Ae) (0

Let y be a character (mod p) of exact order ¢; such a character exists since § divides p—1.
The number of solutions of

x0 = Y (mod[))
s L+x(y) +x2(y) + -+ (y)-
Hence T(A) = ;{1 Fx(y) + A (Y) e (Ay).

If A== 0 (modp), the sum arising from the term 1 vanishes, and each of the other sums is
a Gaussian sum having absolute value p? (see, for example, Davenport 1962, pp. 42-43).

Hence IT(A) < (0—1)p if A= 0 (modp); (10)
and of course TA)=p if A=0 (modp). (11)

Suppose R = 1. In this case the rank condition is of course void. There is only one congru-
ence, and its coefficients a;, say, are not divisible by p, by an earlier remark. We have
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SIMULTANEOUS EQUATIONS OF ADDITIVE TYPE 561
A; = a;u, and consequently A, == 0 (mod p) when z == 0 (mod p). It follows from (8) and (10)
that ’
iy =l <pt TN - T(A,)|

< ' (p—1{0-1)pt}"
We have n = 3R = 3. To get 4" > 1 it suffices to have

P p—D{E—1)pY <p—1.
This holds? if (§—1)3 < p?, which is true by (7) since §—1 < k.
Suppose R > 1. We consider the sum on the right of (8). For any u,, ..., u; we have
|T(AY - T(A) | < p{0—1) 1,

where v is the number of A}, ..., A, that are congruent to 0 (mod ).

The linear forms A, ..., A, are constructed from the columns of the coefficient matrix
(a;;) in (4). If, for some u,, ..., ug, there are v of the A; that are = 0 (mod p), the rank of the
matrix formed by the corresponding v columns must be less than R. If this rank is S, the
hypothesis of the lemma implies that

v< 3§—2 < 3R—5.

This bound for v is valid for all ,, ..., u, on the right of (8).

Consider the contribution made to the sum on the right of (8) by those u,, ..., u, for which
exactly v of A}, ..., A, are = 0 (mod p), where v is 3R—5 or 3R— 6 or 3R— 7. The rank of
the v corresponding columns must be exactly R—1, for by hypothesis any set of columns of
rank § < R—2 can number at most 3(R—2) —2 = 3R—8. The number of possible choices

. (3R .
for v columns out of 3R columns is ( ) ), and when these are assigned, «,,...,u, have to

satisfy a system of v linear congruences of rank R—1. The number of possibilities for
Uy, ..., Up, not all 0,1is p—1. Hence the contribution in question is

< (4% ) o610 (1) + (45 ) o1 (p-1)

T (313{{.7) PRT((E—1)pH)7 (p—1)

5
(O g O O )
. -1 k1
where a~7;<ﬁ<§ﬁ (12)

by (7). Hence the contribution is less than

3Ra)5
2(p—1) por B0

Next consider the contribution made by those terms for which v is 3R—8 or 3R—9 or
3R—10. By similar reasoning, the rank of the v corresponding columns is R — 2. When these
columns are assigned, the number of possibilities for «;,...,u, (satisfying a system of v

t It is easily proved that in this particular case a weaker condition suffices.
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562 H. DAVENPORT AND D. J. LEWIS

congruences of rank R— 2) is certainly at most p2—1. It is, however, at most p*>—p. For we
can find some further column to supplement the » columns to give a sct of rank R—1, and
Uy, ...,uy must not make the additional linear form vanish. Hence from p2—1 we can
subtract p—1 sets u,, ..., 4, as being incligible. Proceeding as before, we sec that the contri-
bution under consideration is less than

2(p2—p) pr P

We continue with groups of 3 consccutive values of v, the last being v = 4 or 3 or 2. The
terms with v = 1, treated in the same way, give a contribution less than

3Rx)3R-
(pR 1 pR 2)p3}\ <3Rﬁl)l

Finally there is the contribution of all u,, ...,u, for which none of the A; vanish. The
number of possibilities for uy, ...,u, is at most (p—1)%, since the columns of the matrix
contain some subset of rank R, and none of the lincar forms A; corresponding to this subset
can vanish. Thus the contribution is at most

(p—1)F((0—1)p1)3F = (p—1)Rp*Rask.
Collecting the estimates and substituting in (8), and recalling that » = 3R, we obtain

|7 =p| < (p—1) p**V,

where

1 (SROL)

3R
o)y o ()

(3Ra)3k’* 4 % 2 (3RC() 3R-1

- LOpR3 . y U — R-1 43R
SR Y S T A2y Sy s VRS At DA

To prove that " > 1 it will suffice to prove that
(p—1)p*RV < p**—

and this will be satisfied if V<pl.

By the hypothesis (7), together with (12),

p > (BRk)® > (3Ra)8p3.
Hence 3Ra < p=3. It follows that
V<2p (;1,+81,+) PRI (3p7) R
<pl

This completes the proof of lemma 3.

Lemma 4. Let y = 1 and let n = 3R. Then the congruences (4) have a solution if (1) holds.

Progf. The result holds when R == 1, since (as noted in the proof of lemma 3) the rank
condition in the hypothesis of lemma 3 is void in this casc. We prove the result by induction
on R. The inductive hypothesis is that the result holds when R is replaced by S throughout,
for any § < R.

If the rank hypothesis of lemma 3 is satisficd, there is nothing to prove. Ifitis not, there is
some set of 35 — 1 columns in the matrix (;;) with rank .§ (mod p), for some § < R. Without
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SIMULTANEOUS EQUATIONS OF ADDITIVE TYPE 563

loss of generality we can take these to be the first 35 —1 columns. As far as these columns
alone are concerned, there must be R—.S linear relations, independent (mod p), between
the rows. Hence, without affecting the solubility of the congruences, we can replace some
R — S of them by others in which the coefficients of the first 3§'— 1 variables are divisible by p.
Without loss of generality we can write the congruences as

ap X+ ... +a,,x5 =0 (modp),
ag¥+... . +ag, %k = 0 (mod p),
A1 35%8s+ ... +ag.1,%5 =0 (modp),
aR'SSxés’i‘--- —I—aRnx’,j =0 (mod[))

By the inductive hypothesis, and the fact that p > (3(R—S)£)S, there is a solution of the
last R—S§ congruences in the n—3S+1 = 3(R—S)+1 unknowns. (In fact 3(R—S) un-
knowns would suffice.) Denote the solution by &, ...,£,. Put x; = #; for j > 3. The first
S congruences are now congruences of the type (4) in the 35 unknowns

Xy eeesXgg_15Le

By the inductive hypothesis, and the fact that p > (35k)S, these have a solution. In this
solution, one at least of the variables is not divisible by p, and so one at least of

Xy nes Xggoys thggy ooy 1y
is not divisible by p. We therefore have a solution of (4) in the sense defined, and this proves
the lemma.

The results of lemmas 1, 2, 4 give conditions for the solubility of a system of additive
congruences when £ is odd and y is arbitrary, and when £ is even and y is 1. There remains
the case when £ is even and y > 1. For this we provide the following lemma, which is of a
somewhat different character from those that precede. In the lemma itself no restrictions
are imposed on £ and .

- LEmmA 5. Suppose the R x n matrix (a;) includes m disjoint R x R matrices, each of which s
non-singular (mod p). Let 5= (kp—1)
Then the congruences (4) have a solution provided that
3p2y6‘2
(p—1)*

and this solution can be chosen to have x; = 1 for all the R values of j corresponding to the columns of
a particular one of the R X R matrices.

m—1> log 2Rp7 ; (13)

Proof. Tt is easily verified that the number of distinct values (not divisible by p) assumed
by x* to the modulus p is exactly d = (p—1)/d. Let ¥, ..., x& be congruent (mod p) to these

d values. Take & =&}, ...,§, = «k. Then §,, ..., &, are kth power residues modulo p?, and
are distinct modulo p. ”
We can suppose that the columns j = 1, ..., R of the matrix (a;;) have rank R, and simi-

larly for the columns R+1,...,2R, up to (m—1)R+1,...,mR. We put x; = 0 for j > mR,
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564 H. DAVENPORT AND D. J. LEWIS

and we put x; = 1 for (m—1) R < j < mR so as to satisfy the last clause of the lemma. It will
suffice to solve the congruences
(m—1)R

> a;x =b;(modpr) (i=1,...,R)
i=1

for arbitrary b, ..., by, subject to the condition that the values of each #; are limited to the

set 0,&,,...,&,
The number of solutions, say .47, is given by

PN = ¥ 2 egp(wmanr+...—b)+...),
UL, ooy Up X1, vor , X(m—DR
where uy, ..., u, run mod p7, and each x; runs through the set of values specified above. The
contribution of u; = ... = up = 0is (d+1)™"DE Our aim is to prove that 4" > 0.
We introduce the linear forms

A= Sayu (1<j<(m—1)R),
and define UA) =1+ 3 e,y (Af),

where £ takes the values &, ...,£,. We have

[P —(d+ 1) DR < 3 [UN) - UM a5

where 2’ means that #; = ... = u, = 0 is excluded. It will suffice if
2 U - U ey p)| < (d41)0DE,
Uy, ., Up

By Hoélder’s inequality, this will be true if
2 UAN) - UAg) " < (d+ 1)k,
since A, ..., A, are typical of any one of the m—1 sets of R linearly independent forms
corresponding to one of the R X R submatrices of coefficients.
Since Ay, ..., Ay are linear forms in ,, ..., u, with determinant not divisible by p, we can
take them as independent variables mod p7, and replace them by u,, ..., . Thus it suffices if

> |U(uy) ... Ulug)|™ ' < (d41)m-DE,

Uy, ..., Up
We add back the term (d+1)™ D corresponding to #; = .. = u, = 0. Then the sum on
the left factorizes, and the condition becomes
2 | U]t < 2VR(d+1)m, (14)

where u runs through a complete set of residues (mod p?).
We have, for  #= 0 (mod p7),

|U(w)]2 = ]1+ 3 0 ul)|

r ( _gs)
_d—|—1+2r§cos [7 —|—s§r ———Z;——
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SIMULTANEOUS EQUATIONS OF ADDITIVE TYPE 565
We have cosf = 1—2sin% 30 < 1 — 27242

for |0] <m. Put ué, =y, (modp?), where |p,| < ip?. Then 7,,...,7, are distinct since
&15 ..., &4 are incongruent (mod p), and they are non-zero. We have

a 2mu d 2m d 2
rgl COS_—[;?Q - 7§1 o8 p—:’]r S rgl {1——8 (}”Z') }
Plainly 252 is minimal when the 7, consist of 1,2,...,d" and —1, —2,..., —d”, where
d'+d" = d, and its value then is at least t%d(d+ 1) (d+ 2). A similar argument applies to the
double sum over r and s, in so far as we sum over s for fixed . Hence

U] < (d+1)°~ 77 d(d+1(d+2) — 35 2 3 d(d+1)(d+2)
o 2d(d+2
— (d+1) {1_’3‘”(1)27 )}.

We see that (14) will be satisfied if

2 d(d+2)¥m-D
1+(p7—1){1——§ Vi } < 2UR,
Since 2UR = exp (R™'log 2) > 1+ iR,
3m-1)
this will hold if [ﬂ{ -2 d (j}j; 2)} < (2R)-},
. 2d(d+2) 1
Lim— I Sl —_—
and so if F(m 1)10g{1 3 }<log2pr.
s s . ¥
Thus it will suffice if m—1>3 ¥ log 2Rp>.

This is the condition (13).
We add some minor remarks on the results that precede.
(i) Intheinequalities (5) and (7) oflemmas 1 and 3 one could replacekby d = (k,p—1).
(ii) Lemma 2 is sometimes applicable when £ is even. The essential condition is that —1
should be a kth power residue modulo p?.
(iii) Lemma 3, like lemma 5, applies in principle to non-homogeneous congruences.

3. SOLUTIONS OF RANK R

We continue to be concerned with the congruences (4) of § 2, which we rewrite here for
convenience of reference:

D, = a; xF+...+a;,xf = 0 (mod p?),
DO, = ap #f+... +ag,xk = 0 (mod p7).
But from now on we fix the value of y as a function of p and £ as follows: let 4" be the
exact power of p dividing £, and let
1 if 7=0,
y=y(kp)={7+1 if 7>0 and p>2, (16)
7+2 if 7>0 and p=2.

72 Vor. 264. A.
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566 H. DAVENPORT AND D. J. LEWIS

Thus y > 1 if and only it p divides £. This choice of y is designed to cnsure that solubility
(mod p7), subject to a supplementary condition (rank R, defined later), will ensure p-adic
solubility (see lemma 9). We record for future refercnce the fact that

k= y- (17)
This is trivial if p does not dividc £, since then y == 1. If p divides &, and p™ divides £ cxactly,
then

k=pr =2 =71

This proves (17) if p > 2. And if p = 2 we get strict inequality, giving £ = 7-+2, unless 7 = |
and £ = 2, a case which was excluded in § 1.

LemMmaA 6. Suppose that either k is odd, or k is even and p does not divide k. Define ny ~= ny(k, R) by
[[9Rlog BRE] if k is odd, 1

L 18
"o 1Rk+l if k is even and p1 k.| (18)
Then if n = n, the congruences (15) have a solution with not all of x,, ..., x,, divisible by p.
Proof. We appeal to the results of §2 with y as defined in (16).
If kis odd and p+ k, so that y = 1, we apply lemma 2, provided that
p < (3Rk)S. (19)
The desired solution exists if
- Rlogp
. log2 ~

Rlogp _ Rlog (3Rk)

mnee log2 = 069

<2 8 TRlog 3Rk < 9R1og 3Rk —1,
the solution exists if # = [9Rlog 3Rk|. If (19) is not satisfied we can use lemma 4, which
gives solubility if n > 3R.

If k is 0dd and p|k we have y = 7+ 1, where p7 divides £ exactly. We appcal to lemma 2,
which assures solubility if

Rlog p7
"> og2
Rlogp” _Rlogp™! _2Rlogp"

‘The last number is plainly less than 9R log 3Rk— 1, and the result follows.
If k is even and p+ k we have y = 1, and we appeal to lemma 1, which gives solubility if
n > Rk. This completes the proof.

- DEFINITION. A solution X == § of the congruences (15) will be said to be of rank S if the matrix

(a;857) (20)
has rank 8 (modp). This is the same as saying that the matrix
(aij 5]) (21)

has rank §' (mod p), and this in turn is the same as saying that the rank of the matrix formed
from (a;;) by taking only thosc j for which £; == 0 (modp) is S.
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SIMULTANEOUS EQUATIONS OF ADDITIVE TYPE 567

Our aim is to find conditions, expressed in terms of k¥ and R only, which will ensure that
the congruences (15) have a solution of rank R. As we shall see in lemma 9 below, this
implies that the corresponding equations have a non-trivial solution in the p-adic field.
We follow two different lines of argument, one based on lemma 6 above (when it is apphc-
able), and the other based on lemma 5. '

Lemma 7. Suppose that either k is odd, or k is even and p does not divide k. Suppose that for every ]\
there is at least one i _for which aU $ 0 (mod p). Suppose that any form

&P+ ...+ gz Pp, | | (22)

where gy, ..., gx are not all divisible by p, contains at least ny coefficients not divisible by p, where n, is
defined by (18). Then the congruences (15) have a solution of rank R.

Proof. The hypothesis concerning the form (22) implies, in particular, that #n > n,. Hence
the congruences (15) have a solution x = § with not all of §,, ...,£, divisible by p. This
solution has rank at least 1, since some §; == 0 (mod p) and for this j some a;; %= 0 (modp).

We choose a solution X = §-of maximal rank (mod p). If this rank is R there is no more
to prove. So we may suppose that this rank is §, where 1 < § < R.

We define # to be the set of all those suffixes j for whlchg = 0 (mod p). The rank of those
columns a;; for which je 7 is S.

We select all those columns of coeflicients which are linearly dependent (mod p) on those
of #. Without loss of generality we can take these to be the columns j = 1,2, ...,v; these
columns have rank §. Any column with j > vis linearly independent (mod p) of the columns

with j < v.
Since the rank (mod p) of the columns j = 1, ...,vis § < R, there is some linear combina-
tion of @y, ..., P, in which the variables x,, ..., x, occur only with coeflicients divisible by p.

The number of coefficients not divisible by p is at most n—v. The hypothesis of the lemma
implies that n—v = n, o (23)

From the fact that X = & is a solution of the congruences (15), we have

a;;€5=0 (modp?) for 1<i<R. (24)

L’M=

J

Now &; = 0 (mod p) for j > v, since all suffixes with j > v are outside the set 7. By (17) we
have £ > 7, and this enables us to replace (24) by

14
> a;Ef =0 (modp?) for 1<i<R. (25)
=1
We turn our attention to the congruences

S a;#=0(modp?) for 1<i<R. (26)

Jj=v+1

Since n — v = n, by (23),lemma 6 applies, and these have a solution x = n with not all of

Mys1s ---5 1, divisible by p, say 77, = 0 (mod p).
It follows from (25) and (26) that

gl) "'951» 77v+13 teey 7771

72-2
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568 H. DAVENPORT AND D. J. LEWIS

is a solution of the congruences (15). Moreover, it is a solution of rank at least §+4- 1. For we
have £; = 0 (modp) for je .4 and 7,,,5 0 (modp), and the rank of the columns of 7
together with the column j = v+1 is §+1, since the latter column is independent of the
former set, which themselves have rank S.

This solution of rank at least S+ 1 gives a contradiction to the maximal choice of S, and
so the proof is complete.

LEemMA 8. Suppose that k is even and that p divides k. Suppose that any form (22), where g1, ..., 85
are not all divisible by p, contains more than (m—1) R coefficients not divisible by p, where m satisfies

m > [48k2log 3Rk?]. (27)

Then the congruences (15) have a solution of rank R.

Proof. We observe first that the hypothesis (27) ensures that m satisfies the condition (13)
of lemma 5. For we have

m—1 > [48k2log 3RK2] —1 > 48k2log 2Rk?.

Ifp > 2,
3pe? _ 3P ri1y < gp2 (2 )2 2y < 27p )
(- pyplos 2Rpr = T, log (2Rp ) < 3k (p_l log (2RE?) < 5/ k?log 2R,

since k= p70. If p =2,sothat § =p—1 =1,

282
M—z log (2Rp7) = 3 x 2% *4log (27*3R).
(p—1)

If 7 =1 thisis 192log 16R < 48k2log (2Rk?),

sincek > 4. If7 > 21t 1is < 48k2log (2RA?).

This proves the statement made initially.

It suffices now to prove that the hypothesis concerning any form (22) implies that the
matrix (a;;) includes m disjoint R x R matrices, each non-singular (modp). For then
lemma 5 ensures that the congruences (15) have a solution in which some R of the x;,
corresponding to the columns of one of these matrices, are all 1. This is a solution of rank R.

The proof of the existence of the disjoint matrices does not require the condition on m
in (27). We note first that the hypothesis concerning any form (22) implies that n > mR;
for it is always possible to construct a linear combination (22) of @, ...,®, in which the
coefficients of any specified R—1 variables are = 0 (modp), and the hypothesis implies
that n—(R—1) > (m—1) R, whence n = mR.

The rank (mod p) of the whole matrix (q;;) is R, for otherwise it would be possible to form
a linear combination of the rows in which all entries were divisible by p, and this would
give a form (22) in which all the coefficients would be divisible by p, contrary to hypothesis.
Hence it is possible to select R columns of rank R (mod p), and we may take these to be the
first R.

If we disregard these R columns, the rank of the remaining columns is still R, provided
that m > 2. For if it were less than R we could construct a form (22) in which all the coeffi-
cients other than the first R would be divisible by p. This would imply that R > (m—1) R,
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SIMULTANEOUS EQUATIONS OF ADDITIVE TYPE 569

which is false. Hence it is possible to select a second set of R columns, of rank R (modp),
disjoint from the first.

Itis plain that the argument is general ; if m > 3 we can select a third set of R columns, and
so on. This proves the lemma.

LemMa 9. Let the coefficients a;; in (15) be rational integers. If the congruences (15) have a solution
of rank R, then the equations corresponding to (15) have a non-trivial p-adic solution.

Proof. The definition of y adopted in (16) ensures that the solubility of x* = m (mod p?),
where m == 0 (mod p), implies the solubility of y* = m (mod p*) for every v withy = x (mod p?).
For a proof of this classical result, see, for example, Davenport (1962, lemma 9 of § 5).

Let X = £ be a solution of the congruences (15) of rank R, as postulated. Then there
exist R values of j such that §; = 0 (mod p) and such that the corresponding columns of the
matrix (a;;) have rank R (modp). Without loss of generality we can take these to be
Jj=1,...,R

Letv > y be a positive integer. Since the determinant of the first R columns of coeflicients
is not divisible by p, there exist R linear combinations of ®@,,...,®; which, considered
modulo #*, are of the following form:

D) = ¢, 4+ (K15 -5 %)

O = cpxk+¥r(Xgi1s o 0r %)
where ¢, ¢, ... cg == 0 (mod p). These linear combinations are formed with rational integral
multipliers, the determinant of which is not divisible by p.

M ®}(€) = 0 (modp), ..., DH(E) = 0 (mod p7)

and since none of &, ..., §, are divisible by p it follows that
Y(€rirs --rE,) =0 (modp) for i=1,...,R.
By the principle mentioned at the beginning of the proof, there exist 7, ..., 7, such that
W (Ers s €) = 0 (mod )
fori =1,...,R, and ;, = ; (mod p7). Thus
N> s Trs bRt -5 &

constitutes a solution of @, = 0 (mod ), ...,Op = 0 (mod p*) (29)
with none of x,, ..., ¥, divisible by p.

The existence of such a solution of (29) for every v > y implies, by a familiar p-adic
compactness argument, the non-trivial solubility of the equations

(I)l - O, "'3(I)R = 0
in the p-adic field. Hence the result. We would add that an alternative proof of the present
lemma could be given on the lines of the proof of Hensel’s lemma.
Remark. In view of lemma 9, lemmas 7 and 8 give sufficient conditions for a system of
R equations of additive type to have a non-trivial p-adic solution. The resulting p-adic

solution is in fact non-singular. But even though our ultimate aim is to obtain a non-singular
p-adic solution, we can make no use of the fact that the solution provided by lemma 9 is
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570 H. DAVENPORT AND D. J. LEWIS

non-singular. The reason for this is that we are unable to derive, from a given set of equa-
tions, a set which satisfies the hypotheses of lemmas 7 and 8 without employing a variational
procedure, as will be seen in the proof of theorem 3 below. In the course of this process the

non-singularity of a solution is lost, and it has to be restored (at a price) by the arguments
of § 5.

4. p-ADIC SOLUBILITY

We arc concerned with R additive forms of degree &:

- k K
Ji = ay x4 agyxf,
(30)
— k k
Jr = ap X+ agy g,
with intcgral cocfficients ¢;;. Our aim in the present section is to prove theorem 3, which
we restate for the convenience of the reader.

THEOREM 3. Let

[[9R?klog 3Rk] Jor k odd,) .
Ny = Ny(R) = \ (31)
1[48R2k3 log 3RK2]  for k even. |

Then, provided N = N, the equations  f, =0,...,fr =0

have a solution in each p-adic field, with not all the x; zero.

It will be apparent from the form of the theorcm that for any particular prime p the
result remains true if the cocficients a;; are allowed to be p-adic numbers.

We begin by defining

Hfro oo fr) = 11 det(ay,) (@=1,..,R), (32)
JlyeeyJr

where the product is extended over all subsets of R distinct suffixes j,, ..., j, from 1,2, ..., N,
two subscts being considered the same only if they are identical. The number of thesc

subsets is M= N(N—1)...(N—R+1).
The invariance properties of 4 are given in the following lemma.

Lemma 10. (3) If
Jilxys oo xy) =[50 s PP xy)

Jori=1,.., R, then HS s oeosr) = PN (Srs s SR)s
where v=v,+...+vy.
R
(i) 1f il = S dyfy (i 1,.R),
=
where detd;; = D =0,
Lhen Sy eeesSm) = DMI Sy .o S2)-

Proof. (i) We have a;; = p*a,;, and therefore

ij>

det (a;ji) = prrdet (aiji)’
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SIMULTANEOUS EQUATIONS OF ADDITIVE TYPE 571
where p=vy+..+v; .

When we sum g over all the M subsets of R distinct suffixes jy, ..., jz, we get MRy/N, whence
the result.
(i) We have

R
a;} = 3 dihahj:
r=1
and therefore det (aj;,) = Ddet (a;,),
whence the result.

As in Davenport & Lewis (1966), we define two sets of forms f}, ..., fz, with rational
integral coeflicients, to be p-equivalent if one set can be obtained from the other by a com-
bination of the operations (i) and (ii) of lemma 10. Here v, ..., vy are integers (positive,
negative or zero) and the d;; are rational numbers with D = 0. The operations (i) and (ii)
are commutative. If the equations

‘](l = 0, ""fR = O

have a simultaneous non-trivial solution in the p-adic field, then so do the equations of any
p-equivalent system.

We shall suppose initially that
79(f1: -'-afR) #+ 0, ' (33)

and shall then show later how this limitation can be removed.

From all systems of forms that are p-equivalent to the given system, subject to the limita-
tion of having integral coefficients, we select one for which the power of p dividing
3 f1, ---»fr) 1s least. This is possible because (33) holds for each such system. Such a system
of forms will be said to be p-normalized. 'The following lemma, which gives some of the
properties of a p-normalized system of formes, is similar in principle to lemma 2 of Davenport
& Lewis (1966). Itis simpler in that it contains no assertion about the parts of the forms that
are divisible by p, but since R is now arbitrary (instead of being 2), the assertions about the
forms F; are more detailed.

LemMa 11. A p-normalized system of additive forms can be written (afler renumbering the
variables) as

) S = Bl s 3) DGy s 5) Y

Jori=1,...,R, where n>= Nk (35)

and each of x,, ..., x, occurs in one at least of I, ..., Fy with a coefficient not divisible by p.

Moreover, if we form any S linear combinations of F,, ..., Iy (these combinations being independent
mod p), and denote by q the number of variables that occur in one at least of these combinations with a
coefficient not divisible by p, then Q's‘> SNIRE (S'__: 1. R—1). (36)

Proof. We have stated (35) first, for the sake of clarity, but it can also be regarded as the
case § = R of (36).

We obtain (34) simply by including in the forms F; all those variables that occur in one
at least of the f; with a coefficient not divisible by p, and then renumbering these variables
as xy, ..., x,. We have to prove (35) and (36).
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572 H. DAVENPORT AND D. J. LEWIS

Consider the forms

DSi(B51; oo PRy K1 oK) = PETIE (5 05 2) Gy (K5 s 2y).-
These are derived from the forms f;(x;, ..., ¥y) by a combination of the operations (i) and (ii)
of lemma 10. Operation (i) is used with v = 7, and operation (ii) with D = p~%. Hence the
value of & for the new forms is obtained from that for the old forms by multiplying by

[)kRMn/N-RM.

Since the new forms have integral coefficients, it follows from the minimal choice made in
the definition of a p-normalized system that » > N/k. This proves (35).

Let FI, ..., Fg, be any § linear combinations of F, ..., f, independent (mod p), and let
f1s -+ [ s be the same linear combinations of fi, ..., fz. Each set can be completed (by taking
the same R—S of F, ..., Fpor f1, ..., fz) to give a set of R linear combinations, independent
(mod p). Then fi, ..., [ are derived from fi, ..., fz by operation (ii) with D not divisible
by p. Let ¢ (= ¢5) be the number of variables that occur in one at least of Fj, ..., Fg with
a coefficient not divisible by p, and take these variables to be xy, ..., x,. The forms

p_{fl{(pxl)"”pxq’qurl""’xN) (z: 13"-3S)3
Si(%yy s gy Xy s y)  (E=841,.., R),
have integral coefficients. They are derived from f;, ..., fz by a combination of operation (i)
with v = ¢ and operation (ii) with D = p=SD,, where D, is not divisible by p. The same
argument as before gives FRMg/N—SM = 0
whence (36).

Proof of theorem 3. Suppose first that (33) holds. We can then take f,..., fz to be a
p-normalized system.

If £ is odd, or if £ is even and p does not divide £, we appeal to lemmas 7, 9, and 11. The
definition of ¢, in lemma 11 means that any form (22) has at least ¢, coeflicients not divisible
by p. Hence the hypothesis of lemma 7 will be satisfied if ¢, > n,, which will be so if
N = Rkn,. In view of the definition of 7, in (18), this is ensured by the hypothesis N > N,
where N, is defined in (31).

Ifk is even and p divides £, we appeal to lemma 8 instead of to lemma 7. The condition of
that lemma will be satisfied if ¢, = (m—1) R, where m > [48k2log 3Rk?]. This will be so if

N/Rk > R[48k21og 3RA?]

and this is ensured by the hypothesis N > N, where N is defined in (31).
Now suppose that 3( f}, ..., fz) = 0. It is obvious that for any yx there exist forms

fw :é 0 (i=1,..,R),
with rational integral coefficients, such that
W, o, W) £ 0
and such that a{#’ —a;; is divisible by p* for every ¢ and j. By what has been proved above,

the equations fwx)=0 (i=1,..,R)
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SIMULTANEOUS EQUATIONS OF ADDITIVE TYPE 573

have a non-trivial p-adic integral solution X = x®; and since the equations are homogeneous
we can suppose that one coordinate at least of X® is not divisible by p. Thus the point x® lies
on the surface of the cube |x;|, < 1 in the space of points with p-adic coordinates. Here
|...|, denotes the p-adic valuation. If 4 goes to infinity through a suitable sequence, then

lim x® = x

>0

exists in the p-adic sense and is not the origin. We have

Ji(x) = lim f;(x®),

and x9)], = L (x) =110 (),
< (w I
=2 (a;—ag") (x)"
j=1 b
<p
It follows that Fi(x) = 0.

This completes the proof of theorem 3.

5. NON-SINGULAR p-ADIC SOLUBILITY

Let fi, ..., fx be additive forms with rational integral coefficients, as in (30). Our object is
to establish, under certain conditions, the existence of a non-singular solution of the

equations Fi= 0, fa=0 (37)
in every p-adic field. We prove:

THEOREM 4. Let

([9R*klog 3Rk] if ks odd, 1
\[48R23log 3RK2] if k is even.|
For 8§ =1,...,R, let Q¢ denote the minimum number of terms that occur, with at least one non-zero
coefficient, in any S independent linear combinations of fi, ..., fr. Suppose that

Qs= N,(S) for S=1,...,R. (39)

No(R) = (38)

Then_for every p the equations (37) have a non-singular p-adic solution.

Proof. We can suppose that every column contains some non-zero entry, since columns
of zeros can be removed without affecting the hypothesis (39).

We follow initially the argument of lemma 7, but in the p-adic field instead of in the
mod p field. Let J = (df;/x;) denote the Jacobian matrix, of order R x N, of the forms (30).
For any prime p the equations (37) have a non-trivial p-adic integral solution by theorem 3,
since (39) implies that N > Ny(R). Clearly the rank of J at any such solution is positive.
We choose a p-adic integral solution x = § for which J has greatest rank, and denote this
rank by S. If § = R the solution is non-singular, so we may suppose that § < R.

If we replace f, ..., fz by any R independent linear combinations of them, with rational
integral multipliers, we do not change the solutions of (37), nor do we change the rank of
the Jacobian at a solution.

73 Vor. 264. A,


http://rsta.royalsocietypublishing.org/

s |
PN

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

574 H. DAVENPORT AND D. J. LEWIS

We can form R such linear combinations f7,..., %, so that, after renumbering the
variables, they have the form

N
fi=extt 3 ey (1<i<9),
=5
’ ¥ k ,
il

where ¢; #=0 and £, 4 0,...,§ = 0. If £; 4- 0 for some j > § we must have g; == 0 for ¢ > S,
since otherwise the solution § would have rank greater than S. Selecting all those later
columns that arc linearly dependent on the first S, and numbering them S+1, ...,», we can
rewrite f71, ..., fz in the form

v N
Ji=cxft+ 3 azaf+ 3 oapxk (1<i<S),

j=8+1 J=v+1

” (40)
Ji= 2 a;x; (S<i<R),
J=vi1
where, for j > v, a;; = 0 for some : > §. We have ; = 0 for j > ». By hypothesis,
¢+ ﬁ: a;8k=0 (1<i<9). (41)
j=s5+1

The forms f§, ,, ..., fz are R—S§ independent linear combinations of f,, ..., f; and contain
only N—v variables. The hypothesis of the present theorem tells us that

N—v = Ny(R-S).
It follows from theorem 3 that the equations

f.,5'+1 =0,..., ;V: 0

have a non-trivial p-adic solution in x,,,, ..., xy, say x; = 7; (v <j < N). Put

N
A= 3 a;nf (1<i<S).
J=v+l1

In the equations f; = 0, ..., fg = 0 we put
x; =g+t for j<S,
x; = for S<j<y,
X; = z1); for v<j<R.

By virtue of (41), the equations become
kcig,lf-lt,.+(/;) GEF2 ot A2F =0 for 1<i<S.

Take z to be divisible by a large power of p. Then, since ¢;£f~! == 0, each scparate equation
is solublc for ¢; in the p-adic field, the solution being of the form

A,
tz‘ = (—kzngl) Zk+/12kZ2k+/I3kZ3k+ ceey
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where the series is convergent in the p-adic sense (thatis, the power of p dividing 4,,,,, z* tends
to infinity with m). Moreover, if the power of p dividing z is sufficiently large, we have

i+t =0 (1<i<S). (42)
We now have a p-adic solution of all R equations, namely

ity ey Estte bty oo esEos 2ty oo vs 2y
"This solution satisfies (42). It also has zy; = 0 for some j > v, and for this j we have q;; + 0

for some 7 > S. The rank of the Jacobian at this solution is at least §+ 1, and this contradicts
the maximal choice of §. Thus the theorem is proved.

6. PRELIMINARIES TO THE ANALYTICAL INVESTIGATION

In the rest of the paper we shall be concerned with the solubility, in rational integers not
all zero, of R additive equations in N unknowns, which we again write as

(43)
Jr = ap X+ ... Fagyxk = 0.

We may assume that the forms f,, ..., fz are linearly independent, since if they are not it
suffices to solve R—1 equations. In particular, the rank of the matrix (g;;) is R. We may
also assume that no column consists entirely of zeros, since then there is an obvious solution.
The natural approach to the problem, by means of the Hardy-Littlewood method,
would be to attempt to prove an asymptotic formula for the number of integral solutions

of (43) when the unknowns are confined to ranges of the type

P<x<dP (j=1,..,N), (44)

and P— co. Here ¢;, d; are fixed numbers which must be chosen in relation to a real non-
singular solution of the equations (43). The existence of such a real solution is almost
immediate if £ is odd, and is postulated if % is even.
The number of solutions of (43), subject to (44), is given by an R-fold integral:
2 ela(ayaf+.. )+ +“R(4R1x1 ))d“
% X1, ..., Xy
where % denotes the unit cube
0<o;<1,.,0<ap<1, , (45)

and ¢(f) = ™. The integrand factorizes into a pi‘oduct of sums in one variable, and the
integral becomes J,
T(A

(Ay) da, (46)
where Ay, ..., Ay are the linear forms
| A= Za(x (1<] N), | ‘,(47)
and T,(A)= 3 e(AxF).

ciP<x<djP

73-2
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576 H. DAVENPORT AND D. J. LEWIS

If we divide the integration over % into two parts, that over ‘major arcs’ and that over
‘minor arcs’, on the lines of Birch (1962), for instance, it is the latter that present the main
difficulty. For each « on the minor arcs one can apply Weyl’s inequality (if £ is small) or
Vinogradov’s inequality (if % is large) to some of the exponential sums 7}(A;). We need to
know that the inequality is applicable for many values of j, and this raises problems con-
cerning the rank of various subsets of columns in the coefficient matrix (a;;). It appears to
us that these problems can only be resolved by an inductive argument relative to Rif kis odd,
and by an additional hypothesis if £ is even.

We shall adopt a modification of the above approach, which is more effective in relation
to the final number of variables required for success. This is based on the technique of
diminishing ranges for some of the variables, a technique introduced with great effect in
Waring’s problem by Vinogradov. We employed such a technique in our paper of 1963 on
the case R = 1, and in our paper of 1966 on the case R = 2, k = 3.

The allocation of the variables to different ranges will be made on the basis of (i) a dis-
section of part of the coefficient matrix into disjoint R X R non-singular matrices, and
(ii) a particular real non-singular solution which has a special relation to these matrices.
In the next section, on a hypothesis to be stated there (see lemma 12), we establish the
possibility of the dissection, and then the existence of the special real non-singular solution.
The hypothesis will ultimately be shown (in § 13) to be unnecessary when £ is odd, as far as
a proof of integral solubility is concerned. When £ is even the hypothesis will be covered by
that of theorem 2.

The dissection of part of the coefficient matrix, mentioned above, will result in a division
of the variables into 2H + 3% sets of R, where

H = [3klog RE], (48)

together with a residue of N— (2H+ 3k) R variables. Each set of R variables will correspond
to the columns of one of the R X R non-singular matrices.
We shall denote the 2H sets by

By By By ooy By,
and the 3% sets by 1y eens® 3
and the residue by 2. The non-singular solution, say £, ..., {y, will be such that §; > 0 for
all j in the sets ,
CyesCor, BB, D,
and §; = 0 for all j in the sets Boyeoos By By ...y By
For the former variables, we choose ranges
kP <x; <k;P, (49)

where 0 < «; < §; < &} and &} —«; is sufficiently small.
Let @ = 1—1/k. The variables in the sets %4, %,, where v = 2, ..., H, will be given ranges
of the form o1 ) -1
K PV < < kPP (50)

where 0 < ; < «} and «; is sufficiently small.
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SIMULTANEOUS EQUATIONS OF ADDITIVE TYPE 5717
For each of the variables x; we introduce the exponential sum
T(A) = e, (1)

where x; runs through the appropriate range.

The number 4 (P) of integral solutions of the equations (43), subject to the specified
ranges for the variables, is again given by the integral (46), where the linear forms A; are
given by (47). But now the exponential sums are those defined in (51), and the ranges for

the variables in , )
'%23 ~">'@H> gm -'-,‘@H

are of lower order than P.

7. THE ALLOCATION OF VARIABLES

As was indicated in general terms in the last section, there are two important considera-
tions in allocating the N variables x,, ..., xy among the various sets which were described
there. We first need to establish the existence of a sufficient number of disjoint R x R sub-
matrices of rank R in the coeflicient matrix (a;;). We shall deal with this question first, and
here there is no distinction as to whether £ is even or odd. Secondly, we need to find a
special real non-singular solution of the equations (43) which is related to the disjoint
submatrices in the special way indicated at the end of the last section. This offers no diffi-
culty if £ is odd, but if £ is even some reasoning is needed to derive the special real non-
singular solution from the one which was postulated in theorem 2.

LemMA 12. Suppose that any linear combination of the forms fi, ..., fr in (43) contains more than
(2H+3k—1)R (52)

variables with coefficients not all zero. Then it is possible to select 2H+ 3k disjoint R X R submatrices,
each of rank R, from the coefficient matrix (a;;). Moreover, two of them can be taken to be any two
specified disjoint submatrices of rank R.

Proof. We know that the whole matrix (a;;) has rank R, so there is some R x R submatrix
of rank R. We choose one, and this can be any specified one.

The rank of the remaining N— R columns is still R. For if it were less than R we could
form alinear combination of f}, ..., f which contained at most the R variables corresponding
to the R columns already selected. This would imply that R > (2H+3k—1) R, which is
false. Thus there is a second R X R submatrix of rank R, disjoint from the first, and it can be
taken to be any specified one.

If we already have m—1 disjoint matrices of rank R, the same argument shows that the
rank of the remaining N— (m—1) R columns is still R, provided that

(m—1)R< (2H+3k—1)R.

This is true for m < 2H+- 3k, and gives a further submatrix, making m in all. Thus we get
the desired 2H + 3% disjoint submatrices.

From now on, until § 13, we assume the hypothesis of lemma 12 to hold.

We now turn to the choice of a special real non-singular solution. In considering real
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578 H. DAVENPORT AND D. J. LEWIS

solutions, we can put#f = y;, where y; must be positive or zero if £ is even. The equations (43)

become the linear equations ay Y+ ayyy =0,

(53)
ap Y1t +apyyy = 0.
Suppose first that k is odd. We take the 2H -+ 3k sets of R columns, found in lemma 12, to be

! ?
Gy Copy By oo B oy, B oy By

in any order, with a residue of columns 2, asin § 6. Using only the columns in%; and %, we
can solve the equations (53) with none of these unknowns zero. By making a small variation,
we can obtain a real solution of the full equations (53) in which all the unknowns except

those in / ,
By B gy By oo By

are not zero, and those in these sets are zero. By changing the signs of the coefficient a;; in
some of the columns (if necessary) we can suppose that the non-zero unknowns are positive.
We have now obtained a real solution £, ..., §y of (43) with the properties asserted in § 6.

Suppose now that k is even. We are concerned in this case with solutions of (53) in which
those of the y; that are not zero must be positive.

LemMA 13. Suppose that the linear equations (53) have a real solution with all y; = 0 and with
y; > 0 for some R values of j for which the corresponding columns of coefficients have rank R. Then there
exist R columns of rank R, and a further S < R columns of rank S such that the equations (53) have a
real solution with the unknowns corresponding to these columns positive and the other unknowns zero.

Progof. We represent each column of (¢;;) by a point in R dimensional Euclidean space
with the entries in the column as coordinates. Thus we have N points 4, ..., 4y, not neces-
sarily distinct, none of which is the origin 0. The hypothesis asserts that

A+ ... fuydy =0,
where each u; > 0 and some R of the u; are strictly positive, the corresponding columns
being of rank R. By a slight variation of the #; we can represent in the same way any point
sufficiently near to O. Hence O is in the interior of the polyhedron II which constitutes the
convex closure of the points 4,, ..., 4.

Consider an arbitrary line through O. This meets the boundary of IT at two points P, P’ on
opposite sides of 0. We can choose the line so that P, which is necessarily on some R—1
dimensional face # of I, is not on any R—2 dimensional linear space defined by R—1 of
the points 4,, ..., 4y, and similarly for P’.

By a well-known result (see Bonnesen & Fenchel 1934, p. 9), the point P is in or on the
boundary of an R—1 dimensional polyhedron whose vertices are R of the points 4, in #.
By construction, P cannot be on the boundary of this R—1 dimensional polyhedron, and
therefore it is in its interior.

We now have P:lel+"'+URAR5 EDZ: 1,
where each v; > 0 and 4,, ..., 4, are the R points mentioned above. The columns repre-

sented by the points 4,,...,4, are necessarily independent, since these points are the
vertices of an R—1 dimensional polyhedron. Similarly, we have

P,:wl i‘l‘..."l"”]R }{, sz:].,
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SIMULTANEOUS EQUATIONS OF ADDITIVE TYPE 579

where each w; > 0 and the columns represented by 41, ..., 4% are independent. The points
4., ..., Ay may coincide in part with the points 4,, ..., 45, and indeed it is plain that there
may be only R-+1 distinct points among A4, ..., Az, 41, ..., 4%.

Since O is between P and P’ on the line joining them, we have

O =uA;+...+up A%,

where each #; > 0. Let 47, ..., 45 be those points of A4j,...,A; that are distinct from

A,,...,4,. Then o o
! R LA+t A A s Ay = O, (54)

where all the coeflicients are positive.

We can now return to the original formulation. The columns corresponding to 4,, ..., 4,
are of rank R, and the further columns corresponding to 47, ..., A5 are of rank .S, and (54)
implies that the linear equations have a solution as asserted. This proves the lemma.

It is evident from earlier remarks that the postulate that the equations (43) have a real
non-singular solution implies the hypothesis of lemma 13. This lemma then gives us R
columns of rank R, and a further § columns of rank §, and a real solution of (53) in positive
variables corresponding to these columns.

We now apply lemma 12. We take the first of the R x R matrices of that lemma to be that
provided by the R columns just mentioned, and call this#,. We take the second of the R X R
matrices of that lemma so that it includes the S columns just mentioned. This is possible
since the rank of the N— R available columns is R. We call this #,. We call the remaining

R x R submatrices ,
%3’ -00’%3k’ (@l, OOO’QH, g’l’ o..,f@H

in an arbitrary order, and as before there is a residue of columns 2.
Finally, we modify the real solution of (53) found in lemma 13. We assign to the

variables in ,
(52,%3, .. "(gBk: ‘%19‘@1’ ‘@9

other than those variables in @, which already have positive values, small positive values in
place of their previous zero values. This leads to a new solution of (53) in which the variables
corresponding to €, receive values differing slightly from their previous values. It is clear
that if the variations are sufficiently small, we obtain a solution in which all the variables

onding to
corresp g (gl,...,(g;gk, @1,@1,9

are positive. Those corresponding to %,, ...,#p are zero, as before.
On taking the positive kth roots of the variables, we obtain a real solution &y, ..., £y of (43)
which has the properties asserted in § 6.

8. A SYSTEM OF AUXILIARY EQUATIONS

It will be convenient to define
P, =P""' for v=1,...,H, where 0=1-—1/k (55)
Then the ranges for the variables x; in %, or %, given in (50), are of the form

k; P, < x'<«; P, where 0<k;<k;. (56)
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580 H. DAVENPORT AND D. J. LEWIS
We denote by # the union of all the values of j in
BBy B, By
The object of the present section is to prove:
LemMa 14. We have

f TIIT(A)| da < (BB, B (57)
JE
Proof. By Cauchy’s inequality, it will suffice to prove that
IT5(A)|?da < (P By ... Py), (58)
Ujed, ..., By

together with the corresponding result for %1, ...,% 7, which however is equally covered by
the proof of (58).

The integral on the left of (58) can be interpreted as the number of solutions of a certain
system of R equations of additive type in 2RH variables, subject to appropriate ranges for
these variables. We can write this system of equations, in an abbreviated notation, as

XXy =W 4. +Y (59)
where ', stands for R expressions of the form

k K
by X+ +bypx,

bpi X5+ ...+ bgpxk,
and %, for R expressions with the same coefficients but with variables y,, ..., y. The columns
of coeflicients here are those in the set %, of columns of coefficients in the original matrix
(a;;), and so have a non-zero determinant.
The variables x, y in Z,, %, run through ranges of the form

¢, <x<cP, ¢P <y<cP,. (60)
Here we have tacitly taken the ranges to be the same for all the variables in the same %, as
is permissible in the choice madein § 6. We shall also suppose, as we may, that ¢; is sufficiently
small in relation to ¢;, and so on.

It suffices to prove that the number of solutions of the system of equations (59), in
integer variables restricted to the ranges (60), satisfies the estimate in (58).

Since the coefficients in the R columns represented by 2, are linearly independent, and
are the same for Z'; and % |, we can combine the R equations linearly to get an equivalent
system of the form

by xf byyt
Tt AT = o AVt e+,
brxk bryk
where each b; 4 0 and where Z',, ...,%,, ... are expressions like those above but with altered
coefficients. The coefficients in each Z, or %, are the same and have non-zero determinant.

The variables in all of Z',, ...,%  are in the ranges (60), and since ¢y, ..., ¢y are small in
relation to ¢, the sum of all the terms in any row of ,+4 ...+ %y or & ,+ ... +% ,, will have
absolute value less than cb=1PE — ¢h-1 Ph-1,
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SIMULTANEOUS EQUATIONS OF ADDITIVE TYPE 581
On the other hand, we have

|6y xF—b, 9| = [af — o
= k%, —y; | {min (x, y;) !
= 2|x;—yy| (e, A)F L
It follows that |x, —y,| < 1, whence ¥, = y,. Similarly, x, =y, fori =1, ..., R.
The equations (59) reduce to
Lyt Z g =Yyt +Y

and we can repeat the argument. We find that each variable on the left is equal to the
corresponding variable on the right.
The number of choices for all the variables in &', ..., is

< PRPE...PE,
and this proves the result.
9. INEQUALITIES FOR T'(A)

In this section we prove some upper bounds for the sum

TA) = 5 oA (61)

KkP<x<k'P

and for a product of such sums. The sums 7}(A) in (51) are of this form when j belongs to
any OfthC SCtS c@l,gll’%l, ”.,%3";,9,

but we shall only use the results of this section for jin%, ...,%,. The principal application
will be made in the next section.

We begin by quoting Weyl’s inequality and Vinogradov’s inequality in the forms most
useful to us. We denote by ¢ a sufficiently small positive constant.
LemMA 15. Suppose that 4 )
|gA—a| < P+1-8  and P18 < g < PR-1+8, (62)
where q and a are relatively prime integers. Then

k (1)1 1T < P, (63)
where k = (3)F1.

Proof. This follows immediately from lemma 1 of Davenport (1962).

LeMMA 16. Suppose that k = 12. With the hypotheses of lemma 15, we have

| T(A)] < P1=rt?, (64)
where p= : (65)
2k%(2log k+loglog £+ 3)

and where &' is small with é.

Proof. See lemma 9 of Davenport & Lewis (1963).
We combine these inequalities in:

LemMA 17. With the hypotheses of lemma 15 we have
| T(A)| < P, (66)

74 Vor. 264. A,


http://rsta.royalsocietypublishing.org/

0
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

582 H. DAVENPORT AND D. J. LEWIS
1
where o= SFlogh’ (67)

Proof. Itk > 12,
2k?(2log k+loglogk+3) < 2k%(2log k+ $log k+31ogk)
= 8k%logk.

If k£ < 11 then 2%-1 < 8k2log k. This proves the result, since we can obviously omit §’ and 4.
We also need an estimate for | 7(A)| when the first inequality in (62) holds, but ¢ < P!-9.

LemMA 18. Suppose that

|gA—a| < P7%*1-8 and 1< qg<< P70 (68)
Let A =alq+y. (69)
Then | T(A)| € ¢V min (P, P**|y|~1). (70)

Proof. For k = 3 the result follows from lemma 9 of Davenport (19394), and for £ > 4
from lemma 9 of Davenport (19395).

We now use lemmas 17 and 18 to get an estimate for a product of R sums T}(A;), where
the A; are linear forms in R real variables a, ..., o

LemmA 19. Let A,, ..., Ay be independent linear forms in a, ...,a, with integral coefficients. Let
the T;(A;) be sums of the form (61), where «, k" may depend on j. Then either

T < P (11)

o1 &y, ..., 0 have simultaneous rational approximations A,[Q, ..., Ax|Q satisfying
b= Gl (Qdred) =1, (72)
L<Q<Pr, QIf| <Pk, (73)

Proof. If, for any j, A; satisfies the hypotheses of lemma 15, the result follows from lemma 17,
since for every other j there is the obvious estimate |T;(A;)| < P. Hence we can suppose that
for no j do there exist integers a;, ¢; such that

lq]Aj-—ajl < P—k+l—3, Pl—-8 < qj < Pk—l+3
and (a;,¢;) = 1.
On the other hand there always exist integers a;, ¢, satisfyin
y! gers 4;, g; g

|QjAj'—aj| < P—k+l—8, 1< g; < PE-1+6,
Hence, for each j, we must have 1<¢; < P1-s,
Thus lemma 18 is applicable for each j, and gives
|T5(A)| < g5 V< min (P, P7F|y,| 1),

where A; = y;+a;/g;. Denote the expression on the right-hand side above by CP'-%, where
C is a (large) constant to be determined. If

bit..tdp=0
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SIMULTANEOUS EQUATIONS OF ADDITIVE TYPE 583
we get the estimate (71). Hence we may suppose (for large P) that
St +p <o (74)
It follows from the definition of ¢; that
g; < C*PHi, (75)
and ly;| < Clgy Ve P-k+di, (76)
We have Aj:ig ¢;; (J=1,...,R),

where the ¢;; are integers with det¢;; = A # 0. Hence
R
Aa; =j§0a’ijAj (t=1,...,R),
where the d;; are fixed integers (cofactors of the ¢;;). It follows that
B a; .
Ao = 3 d (J+yj) (=1,...,R).
Ji=1 4q;

Hence ;= A;[Q+p;
where @ and the 4; are integers with (@, 4,, ..., 4z) =1, and

Bi =A—IJ§1 dij¥j-
Plainly @ divides Ag, ... ¢z, and therefore by (75) and (74)
Q < |A| C-FRPK1+-+4p) < Pho, (77)
if C is suitably chosen. Also by (76)
QA < "‘QRjg |35 171

R
< DC-'P-* 21 qy .- qpq; VEPY,
;£

where D = max |d;;|. Hence, by (75),
Qlﬂzl < DC-1P-kRC1-RkPkgr+...+kép
< P—k+kzr,

on using (74) and taking C sufficiently large. This, together with (77), gives (73).

10. THE CONTRIBUTION OF THE MINOR ARCS

We divide the unit cube of integration % in (46) into parts called major arcs and minor arcs.
For any integers Q, 4,, ..., Ay satisfying

ISQ<Pr 0<4;,<Q (@ 4y....45) =1, (78)
we define the major arc M, 4 to consist of all & = (a;, ..., az) given by

a;=A,[Q+p; |B;] < QTP ' (79)
74-2
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o being defined in (67). There is the usual convention that any parts outside % are deemed
to be translated modulo 1 to come in . Two major arcs do not overlap unless they are
identical, since an overlap would imply that

4, 4 e

0 Q Q) Qe

Let M denote the union of all M, , and let m denote the rest of %, called the minor arcs.
As shown in § 6, the number ./'(P) is given by the integral in (46). Thus

< P k+k0‘(

H(P) =3 HT( da+f HT(A)da (80)

Q,A J MQ,A j=
We now estimate the last integral on the right.
Lemma 20. We have |
H |T;(A;)| de = o(P9),

mjo1
where Q= N—2HR-+kR—2kRO", (81)
provided H satisfies RO" < 3. (82)
Proof. The N values of j were divided in §§ 6 and 7 into the sets -
By e By By By €1y sC oy D.
For the j in 2 we use merely the trivial estimate P, which gives

J‘[]é‘ |7}(Aj)| < PN—(2H+3/€)R' <83)

For thejin any one of the sets%y, ...,% 5, we can appeal to lemma 19, since for the R values
ofj in any one set, the A; are independent linear forms in a,, ..., «. The second alternative
conclusion of lemma 19 would imply that « was in ), ,, and this is excluded if & is in m.
Hence, for « in m, we have (71), and on multiplying together 3% such inequalities we get

H |T;(A;)| < P3R=3ho, (84)

where ¢ denotes the union of ¢4, ...,% ;.
There remain the values of j in the set #. Here lemma 14 tells us that

[, LT ot (P B

By (55), the number on the right is P2, where
A=R(1+0+4+024...4+08°1)
= Rk(1—0H).
Combining this result with (83) and (84), we see that the integral under consideration is

< PN- 2HR+kR—-KkROH-3ko .

This gives the result prov1ded that (82) holds, since the numbers in (82) are independent
of Pas P— 0.
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LemMaA 21. The condition (82) of lemma 20 is satisfied if H is defined by (48).
It suffices for (82) if etllk > §R} = 8Rk?logk.

It is easily verified that for R > 2 and £ > 3 we have
log {§Rk?log k} < k~1[3klog Rk],
so the condition is satisfied if H = [3klog Rk].

11. PRUNING THE MAJOR ARCS

We turn to the contribution of the major arcs I, 4 to the right-hand side of (80). The
summation over ¢ and A is subject to

L<Q<PY, 0<A,<Q (Qdy.dy) =1, (85)
and each M, 4 is given by «; = 4,/Q+p,, |f;| < Q1P F+ho, (86)

In the present section we shall first reduce the range for @ to 1 < Q < P°, where o is
arbitrarily small but fixed, and then contract W, A to |f;| < P~¥*7, where 7is also arbitrarily
small but fixed.

The approximations 4;/Q to «,,...,a; imply approximations to the linear forms A;.
We have

A=5 S a; (5+4)
]i=1”1i=21”Q1
a 1 X
We put == 3 a;4;, where (q,q;) =1, (87)
q; Q5
R
and Vi = =zl aijﬂja (88)
and have Aj:%j+yj (j=1,...,N). (89)
e

LEmMA 22. If W denotes the whole of R dimensional space then

T min (P, P=*|y;|~1) dB < PR, (90)

'ije’é

and if T denotes the region max |§;| > P~%*7 then

Hmin (P, Pl—klyjl—l) dp << P2kR-(3k—l)1R. (91)

T je®
Proof. The sct € is the union of the disjoint sets €, ...,%,. By Holder’s inequality, it
suffices to prove that

R
f H {mln (P’ Pl-kb,jl—l)}% dp < P2kR’
W j=1

and an analogous result for the intcgral over 7, where y,, ..., ¥, typify a set of R independent

linear forms (88) in £, ..., f, corresponding to any one of the sets %, ...,%

o9 3k*
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586 H. DAVENPORT AND D. J. LEWIS

We can take y,, ..., instead of £, ..., as the variables of integration. The integral
over ¥ factorizes, and it suffices to prove that

f " {min (P, P\-F|y|~1)}3 dy < P2,

which is immediately verified. As regards the integral over .7, the region  corresponds to

a region in y space contained in _
8 Ysp max |y;| > CP*+7,

for some positive constant C. The integral extended over the latter region again factorizes,
and it suffices to prove that

fw . {min (P, P1-ky=1)}3k dy < P2%-Gk-17,
cpktr

'This again is easily verified.
LemmA 23. For any Q, we have
31 < @, (92)
jee

where the summation is subject to (85) and the q; are defined by (87).
Proof. By Hoélder’s inequality it suffices to prove that

3 (0192407 < Q7 (93)

where ¢y, ..., ¢ typify those ¢; which correspond to any one of the sets ¢, ..., %, of values
of. Thus we can take ¢y, ..., ¢, to be determined as functions of @, 4,, ..., 4, by (87), where
the a;; are fixed integers with deta;; 4 0. We have

qj = Q/uj,
R
where u; = (Q, > aiin). (94)
i=1
R
Thus 2a;4,=0(mody;) (j=1,...,R).
i=1
Let d = (, ..., uz). Then the last congruences show that d divides deta,;, since
(Al) '-',AR’d) =1;
and therefore 4 is bounded.
The sum on the left of (93)is > Q3% (uyu, ... ug)3. (95)
X
R .
Let B, = 3Ya;4; (j=1,...,R). (96)
i=1

Then |B;| < @, since 0 < 4; < Q. We have u; = (@, B)) by (94). Thus B; is a multiple of u;
and is < Q.
For given values of uy, ..., ug, all divisors of @, the number of possibilities for B, ..., By is

Qe o

U uz...uR

<


http://rsta.royalsocietypublishing.org/

s |
PN

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

SIMULTANEOUS EQUATIONS OF ADDITIVE TYPE 587

Also there is at most one set 4,, ..., A for given By, ..., By, by (96). Hence the sum in (95) is
<Y ... STQQ"‘O‘R(ul v lp)3 QF(uy o up) !

u11Q Up
(u, ..., up)<1
= }E e 2 Q7R (uy . up)?
u11Q uRlQ
(ul,...,uﬂ)<l
= Q% S5(Q),

say.
We put u;, = dv,, ..., u, = dvg, where (vy,...,v;) = 1. Then

Sp(Q) = 3 > (dRv; ... vg)2%
dlQ nlQid, ., vplQld
d<1 (1}1, >..,IJR)=1

The conditions of summation imply that

V0 ... 0g | (Qd)R,

for if p* is a prime power component of ¢/d, then at most R—1 of v}, ..., v, can be divisible
by p. We put v, v, ... v, = w, and recall that the number of times any particular w can occur
is < we, for any fixed ¢ > 0. Hence

Sp(Q) < X d?% 3wt

d1Q wl(Qla)®!
d<1

< 3 d?R(Q[d)eto®-D
ddéQl

< Q@ero@®-D,
It follows that the sum in (95) is

< Q2R+ -1 < Q-3

This proves the lemma.
LemMA 24. The contribution made to the right-hand side of (80) by the My » with Q > P is

< pa-io, (97)
where () is defined in (81).

Proof. We estimate the product of the |T;(A;)| trivially except when je®. This gives
Jﬁl ITy(A)] < PN—2HR—kR~2kR03jE1‘I% T, (A))]-
Since g¢; is a divisor of @ by (87), we have
g; < Q < P < P19,
Also, by (88) and (86) Iy, < é 1Bi] < Q-1P-k+to,

The hypotheses of lemma 18 are satisfied, and therefore
| T5(Aj)| < g5 '"*min (P, P1=*|y;|71).
Hence 1 [7(A)] < {TLa7/}{ TL min (P, P'~¢|y,| 1)}, (98)
J€ JE€

JE
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588 H. DAVENPORT AND D. J. LEWIS

To estimate the contribution made by all M, 4 with @ > P® we have first to integrate
this over I, 4. Instead we integrate over the whole of space and use (90). We have then
to sum over A and over @ > P¢, and here we use (92). The resulting estimate for the contri-

bution under consideration is
— —kR—~ H —
PN-2HR-KR 2kRO . P2%R P %w’

which is as stated.
We denote by M, 4 the contracted major arc obtained by replacing the second inequality

in (86) by B < P*+7 (i=1,...,R). (99)
The number on the right is less than that in (86) since now @ < P and w, 7 are small.

Lemma 25. The difference between the contributions made by the MM, o and the My, 5, with
Q < P® in both cases, is «< po-T, (100)

Proof. It suffices to estimate

s 3 (11174 do,

e<P® & J j=1
where the integration is over M, ,—My, 4 that is, over
P~k+7 < max lﬂl‘ < Q—lP—k+ko'.

Again we take the trivial upper bound for all 7;(A;) except for j in %, and for the product
over j in ¥ we have the estimate (98). We integrate the right-hand side of (98) over the
region Z of lemma 22 and use (91). We have then to sum over A and @ (where we can

allow @ to go from 1 tooo), and here we use lemma 23. The resulting estimate is

IN-2HR—KkR—-2kROE P2kR—(3k—1)TR
P P2R-@E-DTR_

and this implies the result stated.
We have now reached the following situation:

#®)= 33 %“:ﬁl@(z\j) da-+o(P%). (101)

This follows from (80) and lemmas 20, 24, 25.

12. THE ASYMPTOTIC FORMULA

We now proceed to evaluate (asymptotically, as P—c0) the sum of integrals on the right
of (101). '
Each exponential sum 7;(A,;) is of the form

TA) = 3 e(AxF). (102)
KX<x<k'X
Ifj is in any of the sets CrseosCop, B, B, D (103)

the appropriate value of Xis P;ifjis in %, or %, (where v = 2, ..., H) the appropriate value
of Xis P,. We denote by & the union of the (disjoint) sets (103).
We give first an approximation for sums of the general type (102).
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SIMULTANEOUS EQUATIONS OF ADDITIVE TYPE 589
LemmA 26. Suppose that
A= (alg)+7 (104)
where (@,9) =1, ¢<X, |y] <g X+, (105)
0 being a small positive constant. Then
T(A) = g7'S(a, 9) I(y) + O(X*), (106)
where S(a,q) = i‘ e, (ax"), (107)
x=1

k' X
and I(y) = f e(yx*) dux. (108)

kX

Proof. See lemma 4, Davenport (1962). Note that the conditions imposed there on , a, q
are the same as in (104) and (105). The proof’is simple and elementary.

Lemma 27. Suppose o is in My a. If j is in the set & we have

T (A)) = 7' 8(a;, 45) L;(7;) + O (P?), (109)
where S(a;, g;) is as defined in (107) and
K P

L) = [ ety d, (110)

and where 8 is small if  and 7 are small. If j is in B, or B,, where v = 2, ..., H, we have
Ti(A)) = (K5—«;) B,g;' S(a;, ¢;) + O(P}?). (111)

Proof. For a in M, 4, we have

;= A4;/Q+F; (112)
IS Q< P, |f] <PHim, (113)
Hence, for each j, by (87), ;< Q< Py, (114)
and by (88) ly;| < Pk, (115)

Suppose first that j is in &. Then (114) and (115) imply that the conditions (105) with
X replaced by P are satisfied, provided we choose d to be greater than 7+4w. Thus (109)
follows from (106).

Suppose next that j is in &, or #,, where 2 < v < H. We have to apply lemma 26 with X
replaced by P,. Since F, is greater than a fixed positive power of P, the conditions (105)
with X replaced by P, are still satisfied, provided we choose & to be greater than some
constant multiple of 74 w. Hence we have (106), where now I(y) is replaced by

K} Py
f e(y; %%) dx.
KjPy
Here, however, by (115) ’

b,]' xk &£ P—k+‘rP;s < P-k+7Pk-1 < P-1+7,
Thus the above integral is (K;—«;) B+ O(P,P~1+7),
and the error term is O(1) if 7 < 1/k. On substituting this in (106), and noting that
|g718(a,q)| < 1, we obtain (111).

75 Vor. 264, A,
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590 H. DAVENPORT AND D. J. LEWIS
LemmA 28. We have
" ‘
. 3 [ TITA) da = @(Po).s (P+7) o(P), (116)
Q<P? A J My,a j=1 : .

N
where &)= 3 > Ilg¢i'8(aq)), (117)

Q<P? A j=1
and S (PF47) = C(P,... P,)2R f T1L(y,) de, (118)

Jjeé

and C'is a positive constant, and the integration is over
|| < P~**7 (i1=1,..,,R). (119)
Proof. In order to approximate to J] 7;(A;) we have to multiply together the approxima-
J

tions (109) for j in & and the approximations (111) forj in %, and %., forv = 2, ..., H. We
can estimate the error by multiplying together estimates for any set of main terms and for
the complementary set of error terms. Any main term is obviously majorized by P or P, (as
the case may be) and any error term by P2 or P23, The largest estimate arises when we take
P or F,in all but one case, and the omitted case is P,,. Thus the error is

< PN—z(H—l)Rpgk ... PR-1p%
— PN-2HR(P, .. P,)2R P;1+2,
"This has to be integrated over (119) and summed over A and over @ < P®. The result is

<<PN—2HR+2kR(1-OH)P;II+28PR(-—k+T) z QR’
Q<p®

and when this is expressed as a power of P the exponent is
N—2HR+kR—2kROH — (1—28) 671+ Rr 4+ (R+ 1) 0.

This is a permissible term in accordance with (116) provided 7 and v are sufficiently small.
The product of main terms is

C(P, ... Py ]ﬁl{q;‘ (e )} TLL ),
where C= E«; (K—«;)- ' (120)

This gives the first term on the right of (1186).
LemMma 29. We have

S(PY) = G+o(1), (121)

where &= 3 SQ7S,A,Q), (122)
=

and S,(A, Q) :él...é'leQ(AlﬁjL...juARfR). (123)

Progf. 1t follows from Lemma 15 of Davenport (1962) and lemma 23 that
S(P¥) = &+ 0(P ),
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SIMULTANEOUS EQUATIONS OF ADDITIVE TYPE 591 .
where € = ngl g j]iv[l 75 'S(a;, 4;)-
We have, by (87), S(a;, q;) = xqgjl e(a; xk/‘.lj;)
= xizjl e (% é a; Aix")
%xé ey ( g Aix") )

since @ is a multiple of ¢;. Hence
N Q R N
oSl 0) = Q7 5 3 oo 3 3 u4i)-
= = Xy= i =
Since f; = Z a;; %y, this gives & as in (122).
~ LemMa 30. We have
SI(P~#7) = CyP2(1+0(1)) (124)
as P— oo, where C, is positive and independent of P. -
Proof. The R-fold integral in the expression (118) for . (P~**7)
is [110,) ce, (125)
jeé
extended over (119). The first step is to extend the integral to the whole of @ space. In the
integral over the remainder of space, that is, over
max |f;| > Pk,
we use (91) for j in % and the trivial estimate O(P) for other j. Note that (91) is applicable
. [;(2,)] < min (B, Py, |,
Thus the difference between the integral over (119) and that over the whole space is
« P%R-(k~DTRPN-3KkR-2H-DR,

When this is multiplied by (P, ... Py)2R it gives an error which is permissible in (124).
Thus we can replace (125) by

. [
tim [* nl(mdﬁl dfye (126)
—>00 o — Je

We put f; = P~#¢; (i = 1,..., R), and in the definition of I;(y;) in (110) we put x = Py'/%.

Thus <
Li(y;) = P f KTy ke (y; Pry) dy.
Kj

This applies for j in &, that is, for N—2(H—1) R values of j. The y; are linear forms in
f1s ---s P, given in (88), and therefore
7;(B) = 7;(P7FE) = P~R;(%).

75-2
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592 H. DAVENPORT AND D. J. LEWIS
Hence (126) becomes
pr-2er-vr-ke i [V HJ (7;) A&y ... AL, (127)
Yoo J —f ~y je&
where Ji(y;) = k71 ny““’ke(yjy) dy
and Ay =k)k, A= (k) VR,

The power of Pin (127), when multiplied by the factor (7, ... Py)2R in (118), gives P2, as in
(124). Hence it remains only to prove that

. ¥
lim HJ (y;)dg; -
Yo J =y -y jeé

is a positive number independent of P.

For convenience we take temporarily the values of j in & to be j =1,..., M, where
M = N—2(H—1)R. We may suppose that the columns for j =1, ..., R are linearly inde-
pendent (for instance we may take them to be the columns of #,). Apart from a factor k=¥,
the last expression is

lim f f dg f ) VRt YuYar) AY5
bull BV B P
where " is the fixed M dimensional region given by A; <y; <Aj. Now

J:ZJI ViYi = 2 Y. 2 a; 6 = 2 §izi(y),
where the z,(y) are the linear forms
z,-(Y)=j§aijyj (i=1,...,R).
Hence we can rewrite the previous expression as

lim (yl Yar) 1 ”‘H sin 21r¢z
Y0 Z;

The equations z,(¥y) =0,...,25(y) =0

(128)

have the real solution y; = £f = 5, (say), where §, with all M coordinates positive, is the
special real non-singular solution of §§ 6 and 7. By the choice of x;, «; in (49) we have

jo N
<<k (j=1y., M).

We were also allowed to take A} —4; arbitrarily small.
In the integral (128) we make a change of variable from

Y5« sYps Yr+10 -5 Ym

to Ziyees Zpy Ypits s Y

as is permissible since the determinant of the linear forms z,, ..., z, relative to y,, ..., ¥z
is not 0. We can write the result (apart from a positive constant factor) as

. sin 2myz,
lim m[Il MZV’ZV(ZI, Sz dz, .. dzy,
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SIMULTANEOUS EQUATIONS OF ADDITIVE TYPE 593

where Zis an R dimensional region which contains the origin as an inner point, and where

V(zy ..oy 2g) = fx(z) (Y1 Yar) oAy pyy o dY e

Here o (z) is the M — R dimensional section of the M dimensional box # by the linear
space for which z,, ..., z, have assigned values. The integrand has a positive lower bound,
assuming that the numbers A;—A; are sufficiently small.

By Fourier’s integral theorem, the last limit has the value 7(0, ..., 0), and this is a positive
constant. Hence the conclusion of the lemma.

LeMMA 31. Suppose the equations (43) have a non-singular p-adic solution for every prime p. Then
€>0.

Proof. By (122),
&= 3 3074 Q)

where the series is absolutely convergent. It follows by standard arguments (see, for example,
Davenport 1962, lemma 6) that
port19 ) & =TI x(p)

YE

where x(p) = ; % () 7VSo(A,p")

in which A = (4,, ..., 4;) runs through residue classes (mod ”) with (4, ..., 4g,p) = 1. It
follows from lemma 23 that
> () IS )| <o

0

i

Hence lx(p)—1] <p3,
and so there exists p, such that IT x(p) > 3.
b>bo

For an individual p < p, it follows from standard arguments (Davenport 1962, lemma 8
for the case R = 1) that
) M(p)

x(p) =lim m,

y—>00

where M(”) denotes the total number of solutions of the congruences to the modulus p”
corresponding to the equations (43). The existence of a non-singular solution in the p-adic
field implies that the above limit is positive. Hence the product of y(p) for p < p, is positive,
and this proves the lemma.

We can now summarize the situation reached as a result of the analysis which began in § 6.
We need the hypothesis made at the beginning of § 6 that the coeflicient matrix has no
column all 0. We need also the hypothesis of lemma 12, which in particular supersedes the
hypothesis that the forms fi, ..., f; are linearly independent. If & is even we need also the
hypothesis, made in § 7, that the equations (43) have a real non-singular solution. Then,
combining (101) and the results of lemmas 28 to 31, we get A#'(P) = o0 as P—o00. Hence:

LemMA 32. Suppose that all N variables occur explicitly in the equations (43). Suppose that any
linear combination, not identically zero, of the forms fi, ..., fr contains more than (2H+3k—1) R
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594 H. DAVENPORT AND D. J. LEWIS

variables explicitly, where H = [3klog Rk]. Suppose the equations (43) have a non-singular solution
in every p-adic field, and further, if k is even, a real non-singular solution. Then the equations (43) have
infinitely many solutions in integers.

13. PrOOFS OF THEOREMS 1 AND 2

Lemma 32 contains essentially two hypotheses if £ is odd, and three if £ is even. One of
these is the hypothesis that the equations (1) have a non-singular p-adic solution, for every
prime p. By theorem 4 this will be true if
([9$%klog 3Sk] if k1isodd,
|[488%%10g 3Sk2] if kis even.
Here Qg denotes the least number of variables that occur explicitly in any set of § inde-
pendent linear combinations with rational coefficients (not all 0) of fi, ..., fz. The inequality

(129) is to hold for § =1, ..., R.
The second essential hypothesis oflemma 32 can be reformulated in the above notation as

Q,> (2H+3k—1)R, (130)

Qs> (129)

where H = [3klog Rk]. Now
(2H+3k—1) R = 2R[3klog Rk]+ 3kR— R < [9Rklog 3Rk].
Thus both the hypotheses (129) and (130) will be satisfied if

([9RSklog 3RK]  if kisodd, |

| [48RSK*log 3RK?] if Fkis even,] e

Qs>

for§=1,2,...,R.
If k is even, the hypothesis (131) is made explicitly in theorem 2, as also is the hypothesis
of non-singular real solubility, needed in lemma 32. Thus the proof of theorem 2 is now

complete.
To prove theorem 1, it suffices to show that when £ is odd, the hypothesis (131) is
superfluous, provided that N = [9R%log 3Rk]. (132)

We proceed by induction on R. If R =1 the condition (131) reduces to (132). Now
suppose that R > 1 and that the result of theorem 1, with R replaced by R, < R, has

already been established.
If (131) holds for § = 1,..., R there is nothing more to prove. If not, there is some S,
necessarily less than R in view of (132), for which

Q¢ < [9RSklog 3RE].

We can replace the original R equations by an equivalent system in which § of the equations
contain only @ variables explicitly. We give these variables the value 0. There remain
R—S§ equations in N— @ unknowns. By the inductive hypothesis, with R, = R—S, these
equations have a solution in integers, not all 0, provided that

N—Qs = [9(R—S)%klog 3(R—S)k],
this being the appropriate form of (132).
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SIMULTANEOUS EQUATIONS OF ADDITIVE TYPE 595
The last condition is satisfied, because

N—Qq > [9R%log 3Rk] — [9RSklog 3R] +1
> [9R(R—S) klog 3R]
> [9(R—S8)2klog 3(R—S) ].

This completes the proof of theorem 1.
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